A Chromatic Symmetric Function in Noncommuting Variables

نویسندگان

  • David D. Gebhard
  • Bruce E. Sagan
چکیده

In [12], Stanley associated with a graph G a symmetric function XG which reduces to G’s chromatic polynomial XG(n) under a certain specialization of variables. He then proved various theorems generalizing results about XG(n), as well as new ones that cannot be interpreted on the level of the chromatic polynomial. Unfortunately, XG does not satisfy a Deletion-Contraction Law which makes it difficult to apply the useful technique of induction. We introduce a symmetric function YG in noncommuting variables which does have such a law and specializes to XG when the variables are allowed to commute. This permits us to further generalize some of Stanley’s theorems and prove them in a uniform and straightforward manner. Furthermore, we make some progress on the (3+1)-free Conjecture of Stanley and Stembridge [14].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plurigraph Coloring and Scheduling Problems

We define a new type of vertex coloring which generalizes vertex coloring in graphs, hypergraphs, and simplicial complexes. This coloring also generalizes oriented coloring, acyclic coloring, and star coloring. There is an associated symmetric function in noncommuting variables for which we give a deletion-contraction formula. In the case of graphs this symmetric function in noncommuting variab...

متن کامل

Scheduling Problems and Generalized Graph Coloring

We define a new type of vertex coloring which generalizes vertex coloring in graphs, hypergraphs, and simplicial complexes. To this coloring there is an associated symmetric function in noncommuting variables for which we give a deletion-contraction formula. In the case of graphs our symmetric function in noncommuting variables agrees with the chromatic symmetric function in noncommuting variab...

متن کامل

A Noncommutative Chromatic Symmetric Function

In [12], Stanley associated with a graph G a symmetric function XG which reduces to G’s chromatic polynomial XG(n) under a certain specialization of variables. He then proved various theorems generalizing results about XG(n), as well as new ones that cannot be interpreted on the level of the chromatic polynomial. Unfortunately, XG does not satisfy a Deletion-Contraction Law which makes it diffi...

متن کامل

Symmetric Functions in Noncommuting Variables

Consider the algebra Q〈〈x1, x2, . . .〉〉 of formal power series in countably many noncommuting variables over the rationals. The subalgebra Π(x1, x2, . . .) of symmetric functions in noncommuting variables consists of all elements invariant under permutation of the variables and of bounded degree. We develop a theory of such functions analogous to the ordinary theory of symmetric functions. In p...

متن کامل

The Primitives and Antipode in the Hopf Algebra of Symmetric Functions in Noncommuting Variables

We identify a collection of primitive elements generating the Hopf algebra NCSym of symmetric functions in noncommuting variables and give a combinatorial formula for the antipode.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001